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a b s t r a c t

In many molecular dynamics simulation software packages and hardware implementa-
tions, piecewise polynomials are used to represent and compute pairwise potential func-
tions efficiently. In this paper, we present three modifications applicable to most
interpolations to increase their accuracy. The increased accuracy reduces the amount of
data that needs to be stored for each interaction potential, making such interpolations
more suitable for architectures with limited memory and/or cache or hardware
implementations.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In most molecular dynamics or Monte-Carlo simulations, the most expensive part of each time step is the evaluation of
the non-bonded pairwise interactions [1–3]. Given a pair of particles pi and pj of the species A and B respectively, the inter-
action energy
eij ¼ vABðrijÞ
is computed from the interaction potential vAB specific to the particle species A and B and the inter-particle distance rij. The
resulting interaction force on the particles pi and pj is the gradient of the potential with respect to the particle coordinates
. All rights reserved.
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Algorithm 1. Naive interaction of two particles pi and pj of species A and B respectively
1: rij  xi � xj
IBM’s Cell Broadband Engine [4], for example, has no dynamic branch prediction capabilities, incurring a pen
anch.

GROMACS, for example, uses an interpolated potential only for tabulated user-supplied potentials.
(compute the inter-particle vector)

2: rij  krijk2
 (compute the inter-particle distance)

3: f ij  0; eij  0
 (initialize the force and energy)

4: if AB interact with a Lennard–Jones 12-6 potential then

5: eij  eij þ 4eAB
rAB
rij

� �12
� rAB

rij

� �6
� �

6: fij  fij þ rij
24eAB
r2

AB
�2 rAB

rij

� �14
þ ðrAB

rij
Þ8

� �
7: else if AB interact with a Morse potential then

8: eij  eij þ DAB 1� exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kAB=2DAB

p
ðrij � rABÞ

� �h i2
þ eAB

9: fij  fij þ
rij

rij

@
@rij

DAB 1� exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kAB=2DAB

p
ðrij � rABÞ

� �h i2

10: else if AB interact with a . . . potential then
11: eij  eij þ . . .

12: fij  f ij þ . . .

13: end if
14: if AB interact with a Coulomb potential then
15: eij  eij þ q1q2

rij

16: fij  f ij þ rij
q1q2

r3
ij

17: else if AB interact with an Ewald potential then
18: eij  eij þ q1q2

rij
erfcðjrijÞ

19: fij  f ij � rij
q1q2

r3
ij

erfcðjrijÞ �
2jrijffiffiffi

p
p expð�j2r2

ijÞ
h i

20: else if AB interact with a . . . potential then
21: eij  eij þ . . .

22: fij  f ij þ . . .

23: end if
f ij ¼ �rxi
vABðrijÞ ¼ rxj

vABðrijÞ:
The computation of the pairwise energy and force can be implemented naively as shown in Algorithm 1. This naive com-
putation has some obvious drawbacks:

(i) the relatively expensive evaluation of arithmetic operations such as
ffiffi�p or ð�Þ�1, e.g. when computing the inter-particle

distance rij or within the potentials themselves,
(ii) the relatively expensive evaluation of transcendental functions such as erfc(�) or exp(�) in the computation of the more

complicated potentials,
(iii) the cascading conditional statements (if-then-else statements) can cause stalls on processors with long instruction

pipelines or no branch prediction1 and make exploiting SIMD parallelism more difficult,
(iv) the size of the interaction computation can cause problems on computers with small instruction caches or on hard-

ware implementations where die surface and complexity are critical.

Problem (iii) can, in some cases, be avoided by implementing a separate interaction loop for each interaction type. This
would, however, require the list of interacting particle pairs to be traversed more than once. This inefficiency can easily offset
whatever advantage was obtained by avoiding conditional branches in the first place.

It is for these and other2 reasons that several authors have opted to compute not the exact potentials, as is done in Algorithm 1,
but to compute, store and evaluate an approximation of the potential function:
gABðrijÞ � vABðrijÞ
The approximation gABðrijÞ is usually a function of r2
ij to avoid evaluating the

ffiffi�p to compute rij:
gABðr2
ijÞ � vABðrijÞ:
The approximated potential is then usually represented as a set of n piece-wise polynomials between a set of nodes
xi; i ¼ 0 . . . n:
alty of 18–19 cycles for each mis-predicted
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gABðxÞ ¼

g0ðxÞ x0 6 x < x1

g1ðxÞ x1 6 x < x2

..

.

gn�1ðxÞ xn�1 6 x < xn

8>>>><
>>>>:
where the coefficients bðiÞk of each individual polynomial of degree m,
giðxÞ ¼
Xm

k¼0

bðiÞk xk;
are tabulated. Algorithm 2 shows how this could be implemented naively. Note that only additions and multiplications are
used in the evaluation of the potential and no conditional expressions are required.3 This method, however, is not more effi-
cient per se: the more accurately a potential needs to be modelled, the larger the number of nodes n or the higher the degree m
of the polynomials will be necessary, which in turn leads to larger tables for the coefficients. If the resulting tables become too
large, they may fail to fit comfortably in the processor cache resulting in overhead due to cache misses, slowing the computation
down significantly. Large tables may also be unsuitable for on-chip hardware implementations or on systems using sub-cores
(e.g. GPUs or IBM’s Cell/BE processor) with small local memories and caches.4

Algorithm 2. Compute the interaction between two particles pi and pj of species A and B respectively using a piecewise polynomial
approximation
1: rij  xi � xj
e assume that the interval search can be implemented without conditional statements (e.g. if the
t the loops in Lines 5–10 are unrolled.
Cell/BE processor’s Synergistic Processing Elements (SPE) have a local store of 256 kB [4].
(compute the inter-particle vector)
2: r2
ij  krijk2

2

(compute the squared distance)
3: load the nodes xi and coefficients bk for the species pair AB
4: find i such that xi 6 r2

ij < xiþ1
5: eij  bðiÞm r2
ij þ bðiÞm�1
(evaluate eij and fij using the Horner Scheme)
6: fij  bðiÞm

7: for k ¼ m� 2 . . . 0 do
8: fij  fijr2

ij þ eij

9: eij  eijr2
ij þ bðiÞk

10: end for

11: f ij  rijfij=2
 (construct the force vector)
In [5], Andrea et al. are the first to describe such an approach for simulations run on a PDP-11/70 using an FPS AP120-B
array processor. They represent the potential as a piecewise fifth-degree Hermite interpolation polynomial matching the po-
tential and its first two derivatives at the edges of each interval. The interpolation is computed as a function of r2

ij and the
piecewise polynomials are evaluated using the Horner scheme, which requires only additions and multiplications. Since
the interpolation is smooth and its derivatives approximate those of the original potential, the derivative of the interpolation
can be used to compute the magnitude of the inter-particle force.

Allen and Tildesley [1] suggest storing a table of evaluations of the potential at fixed intervals x2
i ; i ¼ 0 . . . n. The

kth interval containing the distance x2
k 6 r2

ij < x2
kþ1 is found and the potential is computed by evaluating the interpo-

lation of the potential at the nodes x2
k�1; x

2
k ; x

2
kþ1 and x2

kþ2 at the node r2
ij on the fly using Newton’s forward difference

formula. The resulting interpolation is not smooth over the nodes x2
k and, if continuity of the first derivative (i.e. the

interaction force) is required, a separate table for the force must be stored and evaluated. The thus interpolated
force, however, will not be the exact derivative of the interpolated energy, which can cause inconsistencies in the
simulation.

The GROMACS simulation package [2] uses ‘‘cubic splines” to interpolate tabulated user-supplied potential function such
that they match the potential and its second derivative at the interval edges [6]. Unfortunately, if these second derivatives are
not chosen such as they are in ‘‘normal” cubic splines, the first derivative will not be continuous over the interval edges,
which may cause problems if continuity of the interaction force is required. The interpolation is constructed over rij and
not r2

ij. As we will see later, this offers some advantages.
A somewhat different approach is taken by the MD-GRAPE project [7], which produces specialized hardware for MD sim-

ulations: fourth-order piecewise polynomials are generated for some basic functions such as
gLJðxÞ ¼ x�4 � x�7 or gCðxÞ ¼ x�3=2
xi are uniformly distributed, which is usually the case)



Table 1
Different types of piecewise interpolation polynomials.

Method Variable Degree Constraints Notes

Andrea
et al.

x ¼ r2
ij

5 giðxiÞ ¼ f ðxiÞ; giðxiþ1Þ ¼ f ðxiþ1Þ The interpolation nodes xi are chosen irregularly
g0iðxiÞ ¼ f 0ðxiÞ; g0iðxiþ1Þ ¼ f 0ðxiþ1Þ,
g00i ðxiÞ ¼ f 00ðxiÞ; g00i ðxiþ1Þ ¼ f 00ðxiþ1Þ

Allen and
Tildesley

x ¼ r2
ij

3 giðxiÞ ¼ f ðxiÞ; giðxiþ1Þ ¼ f ðxiþ1Þ, f ðxÞ and f 0ðxÞ must be interpolated separately and will not be
consistentgiðxi�1Þ ¼ f ðxi�1Þ; giðxiþ2Þ ¼ f ðxiþ2Þ

GROMACS x ¼ rij 3 giðxiÞ ¼ f ðxiÞ; giðxiþ1Þ ¼ f ðxiþ1Þ, We use the natural spline conditions such that the first
derivative is continuousg0iðxiþ1Þ ¼ g0iþ1ðxiþ1Þ ðfor i ¼ 0 . . . n� 1)

g00i ðxiþ1Þ ¼ g00iþ1ðxiþ1Þ ðfor i ¼ 0 . . . n� 1Þ
g000ðx0Þ ¼ 0; g00n�1ðxnÞ ¼ 0

MD-GRAPE x ¼ r2
ij

4 giðxiÞ ¼ f ðxiÞ; giðxiþ1Þ ¼ f ðxiþ1Þ, The second derivative smoothness condition is only assumed since
the authors do not state how the interpolation is constructedg0iðxiÞ ¼ f 0ðxiÞ; g0iðxiþ1Þ ¼ f 0ðxiþ1Þ,

g00i ðxiþ1Þ ¼ g00iþ1ðxiþ1Þ ðfor i ¼ 0 . . . n� 1Þ

Bowers
et al.

x ¼ ar2
ij þ b 3 giðxiÞ ¼ f ðxiÞ; giðxiþ1Þ ¼ f ðxiþ1Þ, r2

ij is transformed to x 2 ½0;1�
g0iðxiÞ ¼ f 0ðxiÞ; g0iðxiþ1Þ ¼ f 0ðxiþ1Þ

This paper x ¼ arij þ b 5 giðxiÞ ¼ f ðxiÞ; giðxiþ1Þ ¼ f ðxiþ1Þ, rij is transformed to x 2 ½0;1�
g0iðxiÞ ¼ f 0ðxiÞ; g0iðxiþ1Þ ¼ f 0ðxiþ1Þ,R xiþ1

xi
giðxÞ � f ðxÞ½ �2 dkðxÞ ¼min
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which are then used to compute arbitrarily parameterized potentials. The generalized Lennard–Jones potential, for instance,
can be evaluated using
5 Unf
eij ¼ 4eAB
rAB

rij

� �12

� rAB

rij

� �6
" #

¼ 4
r2

AB

r2
ijgLJ

r2
ij

r2
AB

 !

f ij ¼ rij
24eAB

r2
AB

�2
rAB

rij

� �14

þ rAB

rij

� �8
" #

¼ rij
24eAB

r2
AB24=3 gLJ

r2
ij

21=3r2
AB

 !
Unfortunately, in the published literature surrounding the MD-GRAPE project, no information is given on how the interpo-
lation is constructed other than its degree and the number of intervals (1024).

More recently, Bowers et al. have presented the simulation software Desmond [8] which uses uniformly distributed [9]
piecewise cubic polynomials of the transformed variable x ¼ ar2

ij þ b such that x 2 ½0;1� to compute the pairwise electrostatic
interactions which would otherwise require the evaluation of the transcendental functions erfc(�) and exp(�). The polynomi-
als interpolate the potential and its first derivative at the edges of each interval. The same approach, yet using variable-
width5 polynomial segments, is used in Anton [10], a special-purpose computer for molecular dynamics which implements
the pairwise interactions in hardware, for both Lennard–Jones and electrostatic interactions in two separate pipelines.

The different interpolation schemes are summarized in Table 1. Since Taiji et al. (the authors of the MD-GRAPE project)
give no specifications as to how they construct their fourth-degree interpolation polynomial, we will assume, for the sake of
comparison, that they construct a Hermite polynomial interpolating the potential and its first derivative at the interval edges
plus an additional continuity constraint on the second derivative. Since this results in 5n � 1 constraints for 5n unknowns
(the coefficients of the piecewise polynomials), we add the additional constraint g00n�1ðxnÞ ¼ 0. We will also assume, for con-
tinuity, that natural cubic splines are indeed used in GROMACS and we will choose the second derivative accordingly and not
such as to match that of the potential.

The choice of which conditions (continuity of interpolatory) are required to be satisfied by the interpolations depends on
the characteristics of the underlying simulation algorithm. In Monte-Carlo type simulations we could dispense with conti-
nuity constraints altogether since we only need to sample the physical space and not traverse it continuously. Molecular
dynamics simulations using first-order time integration schemes or linear energy minimization algorithms, however, require
continuous first derivatives. Higher-order time integration or energy minimization schemes may require the continuity of
further higher-order derivatives. If the exact total potential energy of the interactions is not required, we can dispense with
the conditions on the zeroth derivative, (e.g. the potential function itself) altogether and interpolate only its first and suc-
cessive derivatives.

In our new approach, listed at the bottom of Table 1, we will differ from the other methods in three major points:

(i) Instead of increasing the degree of the interpolation polynomials by adding additional Hermite or smoothness con-
straints, we will require that the interpolation error with respect to some measure kðxÞ is minimal.
ortunately, in the literature surrounding the Anton project, no information is given as to how the intervals are chosen.
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(ii) We will not construct the interpolation on r2
ij but rather on rij, risking the cost of a

ffiffi�p operation.6

(iii) Instead of distributing the nodes xi uniformly in the interval of interpolation, we will first map the interval to [0,1] and
select the interval using i ¼ bnðaxþ ð1� aÞx2Þc as opposed to i ¼ bx=nc.

We will assume that continuity of only the zeroth and first derivative are required, as is done by [8]. As we will see later,
the techniques described herein can be easily adapted to satisfy any combination of continuity constraints imposed by the
underlying simulation algorithm.

2. Error-minimizing Hermite interpolation polynomials

In all previously published methods, the degree of the interpolating polynomial is dictated by the number of prescribed
matching derivatives or smoothness constraints. In the following, we will only require that our interpolation matches the
zeroth and first derivatives of the potential at the interval boundaries. Additional degrees of freedom are then fitted by
requiring that the resulting interpolation minimizes
6 The
seems t
Z xiþ1

xi

½giðxÞ � f ðxÞ�2 dkðxÞ ð1Þ
in each interval, where f ðxÞ is the interpolated function and kðxÞ is a positive measure on x 2 ½xi; xi�1�.
For our interpolations, we will use the Chebyshev measure
dkðxÞ ¼ dxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p ; x 2 ½�1;1�: ð2Þ
We chose this measure since the resulting polynomial minimizing Eq. (1) is near-optimal in the min–max sense for suffi-
ciently smooth f ðxÞ [11], i.e. the resulting interpolation minimizes the maximum absolute error.

Accordingly, we will transform the interval ½xi; xiþ1� to [�1,1] and define the interpolant such that
giðxÞ � f̂ iðxÞ ¼ f
xi þ xiþ1

2
þ xiþ1 � xi

2
x

� �
; x 2 ½�1;1�:
We will represent the giðxÞ of degree m as linear combinations of the Chebyshev polynomials TkðxÞ of degree k:
giðxÞ ¼
X0

m

k¼0

cðiÞk TkðxÞ:
where R0 denotes a sum in which the first term is halved.
We can compute the first four coefficients cðiÞk ; k ¼ 0 . . . 3 of an initial estimate ~giðxÞ such that the zeroth and first deriv-

atives at the interval edges match the interpoland by solving a Vandermonde-like system of linear equations
1
2 T0ð�1Þ T1ð�1Þ T2ð�1Þ T3ð�1Þ

1
2 T0ð1Þ T1ð1Þ T2ð1Þ T3ð1Þ

1
2 T 00ð�1Þ T 01ð�1Þ T 02ð�1Þ T 03ð�1Þ

1
2 T 00ð1Þ T 01ð1Þ T 02ð1Þ T 03ð1Þ

0
BBB@

1
CCCA

cðiÞ0

cðiÞ1

cðiÞ2

cðiÞ3

0
BBBBB@

1
CCCCCA ¼

f̂ ið�1Þ
f̂ ið1Þ

f̂ 0ið�1Þ
f̂ 0ið1Þ

0
BBBBB@

1
CCCCCA: ð3Þ
We then define the corrections
ckðxÞ ¼
X0

k

j¼0

gðkÞj TjðxÞ
for k > 3 as the polynomials whose kth coefficient gðkÞk is one and who’s first four coefficients gðkÞj ; j ¼ 0 . . . 3 are chosen such
that
ckð�1Þ ¼ 0; ckð1Þ ¼ 0; c0kð�1Þ ¼ 0; c0kð1Þ ¼ 0: ð4Þ
The coefficients can be computed similarly to Eq. (3) (see Line 7 of Algorithm 3). The remaining coefficients gðkÞj ;3 < j < k are
set to zero.

For convenience we will orthogonalize the coefficients of each kth correction with the previous j ¼ 0 . . . k� 1 corrections
using Gram–Schmidt orthogonalization:
gðkÞi  gðkÞi � gðjÞi

Pj
l¼0g

ðkÞ
l gðjÞlPj

l¼0 gðjÞl

� �2 :
interpolation used by GROMACS already incorporates this feature, but the interpolation is not used for performance reasons and the decision to use rij

o have been more a matter of convenience.
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If the coefficients are orthogonal, then so are the polynomials themselves with respect to Eq. (2). Note that since we are sub-
tracting multiples of functions that satisfy Eq. (4), these conditions themselves are preserved.

Due to Eq. (4) we can add any multiple of ckðxÞ to ~giðxÞ without altering the Hermite interpolation at the interval edges
(see Fig. 1). We then only need to choose the weights ak such that
giðxÞ ¼ ~giðxÞ þ a4c4ðxÞ þ a5c5ðxÞ þ . . . ð5Þ
minimizes Eq. (1).
We will compute giðxÞ incrementally, adding each akckðxÞ one after the other. Since the individual ckðxÞ are orthogonal

with respect the measure in Eq. (2), it makes no difference in which order they are added.
In order to compute each weight ak, we first re-formulate Eq. (1) using Eq. (5):
Z 1

�1
giðxÞ � f̂ iðxÞ
h i2

dkðxÞ ¼
Z 1

�1
~giðxÞ þ akckðxÞ � f̂ iðxÞ
h i2

dkðxÞ
which we can minimize for ak by setting its derivative with respect to the latter to zero
Z 1

�1
2ckðxÞ ~giðxÞ þ akckðxÞ � f̂ iðxÞ

h i
dkðxÞ ¼ 0
and solving for ak:
ak ¼ �

R 1
�1 ckðxÞ ~giðxÞ � f̂ iðxÞ

h i
dkðxÞR 1

�1 ckðxÞ
2 dkðxÞ

: ð6Þ
Since we have represented ~giðxÞ and ckðxÞ using Chebyshev polynomials orthogonal with respect to the measure kðxÞ, we can
evaluate Eq. (6) as
ak ¼
Pk

j¼0g
ðkÞ
j ðc

ðiÞ
j � /jÞPk

j¼0 gðkÞj

� �2
where the coefficients /j are the Chebyshev coefficients of f̂ iðxÞ such that
f̂ iðxÞ ¼
X1
j¼0

/jTjðxÞ; x 2 ½�1;1�:
These coefficients can be sufficiently well approximated using
Fig. 1. The corrections c4ðxÞ (solid) and c5ðxÞ (dashed).
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/j ¼
2
N

X00
N

i¼0

f̂ i cos
ip
N

� �
cos

ijp
N

for some large N, where R00 denotes a sum in which the first and last terms are halved.
Algorithm 3. interpðf ; xi; xiþ1;mÞ

1: f̂ iðxÞ  f ðxiþxiþ1
2 þ xiþ1�xi

2 xÞ

2:

c0
c1
c2
c3

0
BB@

1
CCA 

1
2 T0ð�1Þ T1ð�1Þ T2ð�1Þ T3ð�1Þ

1
2 T0ð1Þ T1ð1Þ T2ð1Þ T3ð1Þ

1
2 T 00ð�1Þ T 01ð�1Þ T 02ð�1Þ T 03ð�1Þ

1
2 T 00ð1Þ T 01ð1Þ T 02ð1Þ T 03ð1Þ

0
BBB@

1
CCCA
�1

f̂ ð�1Þ
f̂ ð1Þ

f̂ 0ð�1Þ
f̂ 0ð1Þ

0
BBB@

1
CCCA

3: for j = 0 . . .m do

4: /j  2
N

PN
i¼0

00 f̂ cos ip
N

	 

cos ijp

N

5: end for
6: for k = 4 . . .m do

7:

gðkÞ0

gðkÞ1

gðkÞ2

gðkÞ3

0
BBBB@

1
CCCCA 

1
2 T0ð�1Þ T1ð�1Þ T2ð�1Þ T3ð�1Þ

1
2 T0ð1Þ T1ð1Þ T2ð1Þ T3ð1Þ

1
2 T 00ð�1Þ T 01ð�1Þ T 02ð�1Þ T 03ð�1Þ

1
2 T 00ð1Þ T 01ð1Þ T 02ð1Þ T 03ð1Þ

0
BBB@

1
CCCA
�1

Tkð�1Þ
Tkð1Þ

T 0kð�1Þ
T 0kð1Þ

0
BB@

1
CCA

8: gðkÞk  1
9: for j ¼ 4 . . . k� 1 do

10: w 
Pj

l¼0g
ðkÞ
l gðjÞl =

Pj
l¼0 gðjÞl

� �2

11: for l ¼ 0 . . . j do gðkÞl  gðkÞl �wgðjÞl end for
12: end for

13: ak  
Pk

j¼0
gðkÞ

j
cðiÞ

j
�/j

� �
Pk

j¼0
gðkÞ

j

� �2

14: for j ¼ 0 . . . k do

15: cj  cj þ akg
ðkÞ
j

16: end for
17: end for
The entire computation is shown in Algorithm 3 and Fig. 2. Note that for any different set of constraints, we only need to
re-define Eqs. (3) and (4), without modifying any other part of the algorithm.

The resulting interpolants are represented using their Chebyshev coefficients cðiÞk ; k ¼ 0 . . . m. To evaluate this representa-
tion we could convert them to their monomials equivalents using the matrix M with
Mij ¼ ith monomial coefficient of TjðxÞ
and computing bðkÞ ¼ McðkÞ. Alternatively, we could keep the coefficients cðkÞi and use the Clenshaw algorithm [12] instead of
the Horner scheme [13] in Lines 5–10 of Algorithm 2. Note also that the thus constructed interpolations are for the interval
[�1,1] as opposed to ½xi; xiþ1�. We therefore need to either transform x 2 ½xi; xiþ1� to the interval [�1,1] or shift the polyno-
mials from [�1,1] to the required interval ½xi; xiþ1�. Although the former approach is numerically stable for any value of x,
it would require the storage of the interval centers and widths to transform x 2 ½xi; xiþ1� to [�1,1].

Table 2 shows the number of intervals required for each of the methods shown in Table 1 to achieve an absolute error of
at most 0.01 kJ/mol when applied to a Lennard–Jones potential with e ¼ 1 kJ/mol and r ¼ 0:3 nm for rij 2 ½0:3;1�. The new
interpolation requires significantly fewer intervals than that of Andrea et al. which uses polynomials of the same degree
(m = 5), yet fitted to higher derivatives.

3. Interpolating on rij instead of on r2
ij

In almost all interpolated interaction potentials, the potential energy is computed as a function of r2
ij as opposed to its

definition over rij. This was originally motivated by the need to avoid expensive arithmetic operations such as the
ffiffi�p used

to compute rij from r2
ij ¼ ðxi � xjÞ2 þ ðyi � yjÞ

2 þ ðzi � zjÞ2. However, on most modern architectures, the
ffiffi�p instruction is imple-

mented efficiently and/or can be pipelined.7 This relaxed cost leads us to reconsider the advantages of not computing rij.
eral processors offer fast instructions which return initial estimates of the reciprocal square root, (e.g. the frsqrte instruction in the IBM PowerPC
cture [14]) which can be used to approximate the exact value iteratively. These computations can be inlined and pipelined with other computations.
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Fig. 2. Interpolation of a Lennard–Jones potential with e ¼ 1 kJ/mol and r ¼ 0:3 nm (—) using ~giðxÞ ð� � �Þ; ~giðxÞ þ a4c4ðxÞ (– � –) and ~giðxÞ þ a4c4ðxÞ þ a5c5ðxÞ
(– –, too close to the original function to be seen).

Table 2
Number of equidistant nodes needed to achieve a maximum absolute error of at most 0.01 kJ/mol for different interpolation methods applied to a Lennard–
Jones potential with rAB¼0:3 nm and eAB ¼ 1 kJ/mol for rij 2 ½rAB;1� when interpolating over rij or r2

ij .

Method x ¼ r2
ij

x ¼ rij

Andrea et al. 28 12
Allen and Tildesley 116 50
GROMACS 244 110
MD-GRAPE 40 18
Bowers et al. 61 27
This paper 17 8
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The use of x ¼ arij þ b instead of x ¼ ar2
ij þ b is motivated by the observation that if we represent a continuous and smooth

function f(x) by an interpolation of degree m, the interpolation error in each interval will be proportional in magnitude to the
derivative f ðmþ1ÞðnÞ for some n inside the interval. In Fig. 3 we plot the fourth derivative of a Lennard–Jones potential with
rAB ¼ 0:3 nm and eAB ¼ 1 kJ/mol interpolated in rij and in r2

ij. The derivatives for the interpolation using r2
ij are larger and

hence more (i.e. smaller) intervals will be necessary to achieve the same precision.
Table 2 shows the number of equidistant nodes needed to achieve a maximum absolute error of at most 0.01 kJ/mol for

each of the interpolation methods discussed in Table 1 applied to the same Lennard–Jones potential as in the previous exam-
ple when interpolating over rij or r2

ij. We conclude that if we compute the interpolation over rij directly, we will need roughly
half as many intervals for the same accuracy.

4. Distribution of the nodes xi

For most interactions, the potential function tends to become less and less interesting with increasing rij, i.e. the potential
flattens out, and less nodes would be needed for its accurate interpolation. This was already noted by Hunt and Cohen in [15]
who presented different interval distribution schemes, yet for a piecewise constant potential, and by Berendsen, who pre-
sents an ad-hoc non-uniform distribution in [16, p. 542] in which the interval widths decrease for small values of rij.

The interval distribution should allow for a fast identification of the index i such that xi 6 x < xiþ1 (Line 4 in Algorithm 2).
Andrea et al. use an unspecified variable interval spacing in which the index i could be found using a binary search. This,
however, would not be especially advantageous if we are trying to avoid conditional expressions. The other methods use,
where specified, a uniform node distribution. If we assume that x ¼ arij þ b is in the range [0,1], we can compute the nodes
as
xi ¼ i=n; i ¼ 0 . . . n
The index i can be easily evaluated for any x as
i ¼ bx=nc
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Fig. 3. Fourth derivative of the Lennard–Jones potential with rAB ¼ 0:3 nm and eAB ¼ 1 kJ/mol computed over rij (solid) and r2
ij (dashed).
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We could, however, use any function of x monotonous for x 2 ½0;1� to generate the indices. In the following, we will use the
form
i ¼ n axþ ð1� aÞx2
	 
� �

ð7Þ
which generates indices in the range [0,n] for x 2 ½0;1� and is monotonic for a 2 ½0;2� (see Fig. 4). Although any monotonic
function would work, we chose this form since it is both parameterizable and relatively simple to evaluate. Note that for
a ¼ 1 we recover the uniform node distribution and for a ¼ 2 we recover the node distribution suggested by Berendsen.

The interpolation nodes can be pre-computed as
xi ¼
a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4ði=nÞð1� aÞ

p
2ða� 1Þ :
We now want to compute the optimal value for the parameter a. Given the interval distribution in Eq. (7), the width hðxÞ of
the interval enclosing any value of x is proportional to the inverse of the first derivative of Eq. (7) with respect to x:
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Fig. 4. Different node distributions for different values of a in Eq. (7). From bottom to top, a ¼ 0;0:5;1;1:5 and 2.



Table 3
Interactions for the SPC/E water model using a particle-mesh Ewald scheme to compute the long-range electrostatics, where qO ¼ �08476 e, qH ¼ þ0:4238 e,
eOO ¼ 0:6502 kJ/mol, rOO ¼ 0:3166 nm and j ¼ 3:0.

Interaction Range vABðrijÞ

OO [0.3,1] q2
O

rij
erfcðjrijÞ þ 4eOO

rOO
rij

� �12
� rOO

rij

� �6
� �

OH [0.15,1] qO qH
rij

erfcðjrijÞ
HH [0.17,1] q2

H
rij

erfcðjrijÞ

Table 4
Numbe
interact

Meth

Andr
Allen
GRO
MD-
Bow
This

Table 5
Lookup
et al., A

Meth

Bow
Andr
This
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hðxÞ ¼ n aþ 2ð1� aÞxð Þ½ ��1 ð8Þ
For a piecewise interpolation of degree m, we know that the interpolation error in each interval is proportional to
f ðxÞ � giðxÞ � hðxÞmþ1f ðmþ1ÞðniÞ; x; n 2 ½xi; xiþ1�
For n!1 and thus xiþ1 � xi ! 0, this becomes
f ðxÞ � giðxÞ � hðxÞmþ1f ðmþ1ÞðxÞ:
In order to minimize the maximum interpolation error over all intervals, we choose a 2 ½0;2� such that
max
x2½0;1�

hðxÞmþ1f ðmþ1ÞðxÞ



 


 ð9Þ
is minimal. Since Eq. (9) is not easy to compute analytically, we compute the optimal a ¼ am numerically using Brent’s gold-
en section algorithm [17]. Note that the value a�m is optimal for the asymptotic limit n!1 and that for small n, while still a
good estimate, it may not be optimal.

We compute a�m for the interactions in Table 3 used for the SPC/E model [18] for liquid water simulations, using a particle-
mesh Ewald scheme to compute the long-range electrostatics. A cutoff of 1 nm and a screening of j ¼ 3:0 were used. The
number of intervals n required to achieve an error of at most 0.001 kJ/mol for the different interpolation methods are shown
in Table 4. As can be seen from the results, the interpolation over the node distribution in Eq. (7) using the optimal a�m re-
quires slightly more than half the number of nodes as the interpolation over the uniformly distributed nodes for the same
accuracy.
r of equidistant nodes needed to achieve a maximum absolute error of at most 0.001 kJ/mol for different interpolation methods applied to the
ions in Table 3.

od vOOðrÞ vOHðrÞ vHHðrÞ

a ¼ 1 a ¼ a�m a�m a ¼ 1 a ¼ a�m a�m a ¼ 1 a ¼ a�m a�m

ea et al. 20 11 1.9171 8 5 1.8061 6 4 1.7790
and Tildesley 97 47 1.9537 32 16 1.8979 22 12 1.8817

MACS 410 210 1.9537 88 47 1.8979 51 27 1.8817
GRAPE 36 19 1.9341 11 7 1.8458 8 5 1.8230
ers et al. 54 28 1.9537 17 9 1.8979 12 7 1.8817
paper 13 7 1.9171 5 3 1.8061 4 2 1.7790

table sizes in bytes and average number of CPU clock ticks required to evaluate the potential function vOOðrijÞ using the interpolation schemes of Bowers
ndrea et al. and the error-minimizing polynomials described in Section 2, with and without the improvements suggested in Sections 3 and 4.

od x ¼ ar2
ij þ b x ¼ arij þ b

a ¼ 1 a ¼ a� a ¼ 1 a ¼ a�

ers et al. 2032 B 97.1 clk 1024 B 91.9 clk 864 B 84.3 clk 448 B 89.0 clk
ea et al. 1152 B 97.6 clk 600 B 100.2 clk 480 B 97.2 clk 264 B 102.6 clk
paper 744 B 93.0 clk 384 B 98.4 clk 312 B 94.7 clk 168 B 101.0 clk
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5. Numerical results

To assess the effects of the modification proposed in Sections 3 and 4, the construction and evaluation of the schemes of
Bowers et al., Andrea et al. and the error minimizing polynomials described in Section 2 were implemented as per Algorithm
2 and tested.8

The test program generates the interpolation of the potential vOOðrijÞ from Table 3 and evaluates it using double-precision
arithmetic 10,000,000,000 times for random values of rij 2 ½0:3;1�. The table sizes were selected such that the maximum
absolute error of each interpolation scheme was below 0.001 kJ/mol, analogously to the results in Table 4. To simulate
the effect of having several different atomic species, and therefore several different interaction potential tables, 50 tables
(corresponding to roughly 10 distinct species) of the same potential vOOðrijÞwere generated. For each evaluation one of these
tables was chosen at random. To simulate the effect of competing memory access on the CPU cache, as it is present in any MD
simulation, a buffer of 4,000,000 double-precision values was allocated. Between each evaluation of the potential, 20 random
values were accessed from the buffer, corresponding to the loading and updating of particle data such as positions, forces and
other particle attributes. Every 10,000,000 evaluations the entire buffer was traversed to re-set the cache, as would happen
between two simulation time steps when all particle positions, velocities and forces are updated.

The test program was compiled using the Intel C++ Compiler 11.1 [19] and the individual timings (number of CPU clock
ticks, clk) were collected using the Intel VTune Performance Analyzer 9.1 [20] on an Intel Core 2 Duo running at 2493 MHz
and a 6144 kB L2-cache. Note that different architectures with different instruction latencies, cache sizes, cache speeds or
simulations with different memory access patterns may lead to significantly different results.

The results of this comparison are shown in Table 5. As a point of reference, the direct computation of the interaction
potential required on average 512.0 clk (of which 416.7 clk were required to evaluate erfc(�)), almost five times the number
of cycles required by the worst result using interpolations. As can be seen in the first column (x ¼ ar2

ij þ b; a ¼ 1) and be-
tween the last two rows, the smaller table sizes cause less cache misses, resulting in a faster interpolation evaluation, even
despite the overhead caused by using higher-degree polynomials (requiring two additional iterations of the loop in Lines 7
and 10 of Algorithm 2) in the two bottom rows. This edge, however, is successively lost in the other columns as the tables
become smaller and therefore exponentially less susceptible to be overwritten in the cache (note that even the largest tables
fit comfortably in the cache for these tests).

The optimal n on-uniform intervals (columns 2 and 4 of Table 5) requires an additional multiplication and addition over
using a uniform interval spacing.9 On the architecture on which the tests were run, these costs were only amortized for the
larger tables required by Bowers et al. using x ¼ ar2

ij þ b. Note, however, that on different architectures, i.e. different cache
sizes,10 memory speeds and memory access patterns, the tradeoff may be vary drastically.

The same tradeoff can be seen for the interpolations over x ¼ arij þ b as opposed to x ¼ ar2
ij þ b: The cost of evaluating

ffiffi�p is
best amortized in Bowers et al.’s interpolation due to the large table size. For the other two interpolation schemes the tables
are already sufficiently small for this setup, resulting in a slightly lower performance. Note that the tradeoff for this improve-
ment relies heavily on how well the

ffiffi�p operation can be pipelined with other operations. In our tests the program did little
other than evaluate the potential, leaving little room for such an optimization.

If table size is the sole criteria to be optimized, then the three improvements presented in Sections 2–4 can reduce the
table size by a factor of 12 compared to Bowers et al. and 6.8 compared to Andrea et al. while increasing the computational
cost by 4.0% and 3.5% respectively. On hardware implementations, where computing

ffiffi�p separately is not a promising option,
the table sizes can be reduced by a factor of 5.3 at the cost of three additional multiplications and additions as compared to
Bowers et al., or by a factor of 3.3 at the cost of one additional multiplication and addition as compared to Andrea et al..
6. Conclusions

In the previous sections we have presented three concepts — error-minimizing interpolation, interpolating over rij instead
of r2

ij and the non-uniform distribution of the interpolation nodes — which improve the accuracy of piecewise polynomial
interpolations of potential functions, thus reducing the size of the coefficient table required for its interpolation.

All three concepts can be applied to the previous methods mentioned herein and all three concepts improve on their
accuracy, (e.g. less nodes required for the same accuracy). The corrections ckðxÞ described in Eq. (4) can be constructed such
as to preserve any of the constraints in the fourth column of Table 1 and can thus be applied to any of the interpolation there-
in. Furthermore, the construction of these interpolations depends neither on the interpolation variable (rij vs. r2

ij) nor on the
distribution of the intervals (uniform vs. non-uniform).
8 The interpolations of Allen and Tildesley and GROMACS were not tested since they are of the same degree as Bowers et al.’s yet require more intervals for
the same accuracy. The interpolation scheme of MD-GRAPE was not implemented since it is not sufficiently well described in the literature surrounding the
project.

9 In both cases the mapping from rij 2 ½0:3;1� or r2
ij 2 ½0:09;1� to i 2 ½0;n� can be computed by evaluating a polynomial of degree two or three for the uniform

and non-uniform case respectively.
10 While the test system had a rather large L2-cache of 6144 kB, other systems may have significantly less: The CPUs used in the IBM Roadrunner [21], the

PowerXCell 8i Processor and the AMD Opteron 2210, have 512 kB of L2-cache on the Cell/BE Power Processor Element and 256 kB local storage on the Cell/BE
Synergistic Processing Elements and 2 MB of cache on each Opteron 2210 core.
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As would be expected, the improved accuracy comes at a cost:

(i) the error-minimizing interpolation constructs piecewise polynomials of higher degree which are more costly to store
and to evaluate;

(ii) the interpolation over rij requires the evaluation of a
ffiffi�p operation to compute rij and a reciprocal11 to compute the

force components f ij ¼
rij

rij
fij;

(iii) the non-uniform distribution of the interpolation nodes requires additional computations to compute the interval
index (Eq. (7));

which, depending on the actual implementation and the underlying hardware, could upset the cost/benefit ratio. The
three concepts are, however, mutually orthogonal in the sense that they do not rely on each other and that their effects
are cumulative. If the implementation of any of the single concepts does not result in an improvement, it can be left out with-
out impacting the benefits of the others.
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